Distributed Data Mining Models as Services on the Grid

Eugenio Cesario
ICAR-CNR, Italy

Domenico Talia
DEIS - University of Calabria, Italy

HPDM 2008 – Pisa, December 15th 2008
10th International Workshop on High Performance Data Mining
Summary

- Distributed Data Mining and the Grid
- DDM exploiting the Grid: A Proposed Architectural Model
- Two case studies: K-Means and EM
- Preliminary Experimental Results
- Concluding Remarks and Future Works
Summary

- Distributed Data Mining and the Grid
- DDM exploiting the Grid: A Proposed Architectural Model
- Two case studies: K-Means and EM
- Preliminary Experimental Results
- Concluding Remarks and Future Works
Distributed Data Mining and the Grid

- Distributed Data Mining (DDM) is a fast growing area that deals with the problem of finding data patterns in scenarios with distributed data and computation.

- Two main reasons:
 - Processing large data requires very high computational cost
 - Geographical distribution of data repositories
Distributed Data Mining and the Grid

- The Grid is a global distributed computing platform through which users gain ubiquitous access to a range of services, computing and data resources
 - Implement distributed high-performance applications
 - Support to the implementation and use of data mining and knowledge discovery systems
 - OGSA (Open Grid Services Architecture)
 - WSRF (Web Service Resource Framework)
Summary

- Distributed Data Mining and the Grid
- DDM exploiting the Grid: A Proposed Architectural Model
- Two case studies: K-Means and EM
- Preliminary Experimental Results
- Concluding Remarks and Future Works
DDM exploiting the Grid

- Our goal is to design a service-oriented architectural model that can be exploited for different distributed data mining algorithms, deployed as WSRF-compliant Grid services, for the analysis of dispersed data sources.
 - Implementation of mining services by exploiting the Grid infrastructure.

- In order to validate our model, we also present the implementation of two clustering algorithms on such an architecture, and evaluate their performance.
DDM Algorithm

- DDM: execution of data mining processes in a distributed environment
 - At local sites: execution of distinct data mining processes on different distributed data subsets
 - At a central site: combination of the local results at a centralized site

- The whole process of Knowledge Discovery could speeded up
 - Particularly suitable for applications typically dealing with very large amount of data

- Crucial aspect: trade-off between computational and communication cost
DDM Algorithm General Schema

1. Analysis of local datasets at each site

2. Local models (or Sufficient Statistics) sent to a merger site

3. Integration of local models

4. Algorithm termination?
 - Yes: Global Model obtained
 - No: further elaborations for the local sites (go to 1.)
A DDM Service-based Model

- The overall architecture resembles a DDM architectural model
- It is composed of two Grid Services:
 - GlobalMiner-WS, acting as a coordinator on a central site
 - LocalMiner-WS, acting as a miner on local sites
- A resource is associated to each service, used to store the service status (computed models)
Summary

- Distributed Data Mining and the Grid
- DDM exploiting the Grid: A Proposed Architectural Model
- Two case studies: K-Means and EM
- Preliminary Experimental Results
- Concluding Remarks and Future Works
Implementation

- Two examples of distributed clustering algorithms exploiting the proposed model
 - Distributed K-Means
 - Distributed Expectation Maximization

- Implemented and deployed as WSRF Services by using Globus Toolkit 4.0.x
Distributed K-Means

- **Input parameters:**
 - K, number of clusters
 - S, seed
 - maxIterations
 - datasetLocations

- **GlobalModel Resource**
 - Centroids μ_k, $k=1,...,K$
 - ClusterMembership
 - CostFunction Perf_{KM}
Distributed K-Means

- Local Model Resource on the i^{th} node is composed by the Sufficient Statistics computed on that node, $SS_k^{(i)} = \{n_k^{(i)}, \Sigma_k^{(i)}, s_k^{(i)}\}$

$$n_k^{(i)} = \left| C_k^{(i)} \right|$$

$$\Sigma_k^{(i)} = \sum_{x \in C_k^{(i)}} x$$

$$s_k^{(i)} = \sum_{x \in C_k^{(i)}} dist(x, \mu_k)^2$$

Number of data points

Linear sum of data points

Square sum of the distance (point, centroid)
Distributed K-Means

1. The coordinator initializes the K centroids, $\{\mu_1, ..., \mu_K\}$ and sends them to each local site

2. The i^{th} local site
 1. assigns each x in D_i to the closest centroid
 2. computes the local Sufficient Statistics
 $$SS_k^{(i)} = \left\{ n_k^{(i)}, \Sigma_k^{(i)}, s_k^{(i)} \right\}, \text{for each cluster } k$$
 3. collects all the $SS_k^{(i)}$ and sends them to the coordinator
Distributed K-Means

3. On the central site, the coordinator

1. adds up all the SS\(^{(i)}\) received from each local site, to get the global sufficient statistics
 \[SS_k = \left\{ n_k, \sum_k, s_k \right\} \]
 for each cluster k, by the formula
 \[n_k = \sum_{i=1}^{N} n_k^{(i)}, \quad \sum_k = \sum_{i=1}^{N} \sum_k^{(i)} \]
 \[s_k = \sum_{i=1}^{N} s_k^{(i)} \]

2. computes the new centroids, \(\{\mu_1, \ldots, \mu_K\} \), and updates the Performance Function
 \[\mu_k = \frac{\sum_k}{n_k} \]
 \[Perf_{KM} = \sum_{k=1}^{K} s_k \]

4. If the algorithm converges, stop; else, a new iteration re-starts (go to the step 2)
Distributed EM

- Input parameters:
 - K, number of clusters
 - S, seed
 - maxIterations
 - ε
 - datasetLocations

- **GlobalModel Resource**
 - Centers m_k, $k=1,...,K$
 - Covariance Matrices Σ_k, $k=1,...,K$
 - Mixing Probabilities $p(m_k)$, $k=1,...,K$
 - CostFunction Perf_{EM}
Distributed EM

1. The coordinator initializes
 - the centers \(m_k \)
 - the covariance matrices \(\Sigma_k \) (for each \(k=1,\ldots,K \))
 - mixing probabilities \(p(m_k) \)
 and sends them to each local site

2. The \(i^{th} \) local site
 1. computes the membership probabilities \(p(m_k|x) \)
 2. computes the local Sufficient Statistics
 \[
 SS^{(i)} = \left\{ s1^{(i)}_k, s2^{(i)}_k, s3^{(i)}_k, f^{(i)} \right\}, \ k=1,\ldots,K
 \]
 3. collects all the \(SS^{(i)} \) and sends them to the coordinator
Distributed EM

3. On the central site, the coordinator
 1. adds up all the $SS^{(i)}$ received from each local site, to get the m_k, Σ_k, $p(m_k)$, $k=1,...,K$ and Perf_{EM} by the formula:

 $$m_k = \frac{\sum_{i=1}^{N} s2_k^{(i)}}{\sum_{i=1}^{N} s1_k^{(i)}}, \quad \Sigma_k = \frac{\sum_{i=1}^{N} s3_k^{(i)}}{\sum_{i=1}^{N} s1_k^{(i)}}, \quad p(m_k) = \frac{\sum_{i=1}^{N} s1_k^{(i)}}{|D|}, \quad \text{Perf}_{EM} = \sum_{k=1}^{K} f^{(i)}$$

4. If the algorithm converges, stop; else, a new iteration re-starts (go to the step 2)
Summary

- Distributed Data Mining and the Grid
- DDM exploiting the Grid: A Proposed Architectural Model
- Two case studies: K-Means and EM
- Preliminary Experimental Results
- Concluding Remarks and Future Works
Experimental Evaluation

- Number of nodes: \(n=1,2,4,8 \) (in a LAN)

- Dataset: CoverType (from the UCI archive)
 - 581012 tuples (72 MB)
 - 54 numeric attributes

- Dataset size on each node: \(|D|/n\)
 - We are supposing to have our data just splitted and each partition stored on a given node
Experimental Evaluation – K-Means

- Scalability wrt number of nodes

- Execution time:
 - N=1 -> 3418 s
 - N=8 -> 535 s
Experimental Evaluation – K-Means

- Execution speedup

- Speedup:
 - $N=2 \rightarrow 1.77$
 - $N=8 \rightarrow 6.38$
Experimental Evaluation – EM

- Scalability wrt number of nodes

- Execution time:
 - N=1 -> 5108 s
 - N=8 -> 2283 s
Experimental Evaluation – EM

- Execution speedup

- Speedup
 - N=2 -> 1.94
 - N=8 -> 6.29
Experimental Evaluation

- The distributed version of K-Means and EM build the same model of sequential (centralized) algorithms
 - They do not produce approximated models
 - errorRate_{K-Means} = 0.43
 - errorRate_{EM} = 0.49
Summary

- Distributed Data Mining and the Grid
- DDM exploiting the Grid: A Proposed Architectural Model
- Two case studies: K-Means and EM
- Preliminary Experimental Results
- Concluding Remarks and Future Works
Concluding Remarks

- **DDM and Grid:** Distributed Data Mining models implemented as mining Grid services

- We have defined a general distributed architectural model that can be exploited for distributed algorithms deployed as Grid Services

- **Two implementations:**
 - K-Means
 - Expectation Maximization
Future Works

- More complete experimental evaluation:
 - compute the WSRF overhead vs total execution time
 - total execution time wrt other parameters (#clusters, dimensionality, data set size, etc.)

- Develop and deploy other mining algorithms

- Add a data splitting functionality
Final

- Questions?

Thanks